#### **CAMBRIDGE INTERNATIONAL EXAMINATIONS**

**International General Certificate of Secondary Education** 

## MARK SCHEME for the May/June 2014 series

# 0625 PHYSICS

0625/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| Page 2 | Mark Scheme           | Syllabus | Paper |
|--------|-----------------------|----------|-------|
|        | IGCSE – May/June 2014 | 0625     | 31    |

#### **NOTES ABOUT MARK SCHEME SYMBOLS & OTHER MATTERS**

B marks are independent marks, which do not depend on other marks. For a B mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks are method marks upon which accuracy marks (A marks) later depend. For an M mark to be scored, the point to which it refers **must** be seen in a candidate's answer. If a candidate fails to score a particular M mark, then none of the dependent A marks can be scored.

C marks

are compensatory marks in general applicable to numerical questions. These can be scored even if the point to which they refer are not written down by the candidate, provided subsequent working gives evidence that they must have known it. For example, if an equation carries a C mark and the candidate does not write down the actual equation but does correct substitution or working which shows he knew the equation, then the C mark is scored. A C mark is not awarded if a candidate makes two points which contradict each other. Points which are wrong but irrelevant are ignored.

A marks are accuracy or answer marks which either depend on an M mark, or which are one of the ways which allow a C mark to be scored. A marks are commonly awarded for final answers to numerical questions. If a final numerical answer, eligible for A marks, is correct, with the correct unit and an acceptable number of significant figures, all the marks for that question are normally awarded. It is very occasionally possible to arrive at a correct answer by an entirely wrong approach. In these rare circumstances, do not award the A marks, but award C marks on their merits. An A mark following an M mark is a dependent mark.

Brackets () around words or units in the mark scheme are intended to indicate wording used to clarify the mark scheme, but the marks do not depend on seeing the words or units in brackets, e.g. 10 (J) means that the mark is scored for 10, regardless of the unit given.

<u>Underlining</u> indicates that this <u>must</u> be seen in the answer offered, or something very similar.

OR/or indicates alternative answers, any one of which is satisfactory for scoring the marks.

e.e.o.o. means "each error or omission".

o.w.t.t.e. means "or words to that effect".

Spelling Be generous about spelling and use of English. If an answer can be understood to mean what we want, give credit. However, do not allow ambiguities, e.g. spelling which suggests confusion between reflection/refraction/diffraction or thermistor/transistor/transformer.

Not/NOT indicates that an incorrect answer is not to be disregarded, but cancels another otherwise correct alternative offered by the candidate i.e. right plus wrong penalty applies.

Ignore indicates that something which is not correct or irrelevant is to be disregarded and does not cause a right plus wrong penalty.

ecf meaning "error carried forward" is mainly applicable to numerical questions, but may in particular circumstances be applied in non-numerical questions. This indicates that if a

| Page 3 | Mark Scheme           | Syllabus | Paper |
|--------|-----------------------|----------|-------|
|        | IGCSE – May/June 2014 | 0625     | 31    |

candidate has made an earlier mistake and has carried an incorrect value forward to subsequent stages of working, marks indicated by ecf may be awarded, provided the subsequent working is correct, bearing in mind the earlier mistake. This prevents a candidate being penalised more than once for a particular mistake, but **only** applies to marks annotated ecf.

### Significant figures

Answers are normally acceptable to any number of significant figures  $\geq$  2. Any exceptions to this general rule will be specified in the mark scheme.

Units

Deduct one mark for each incorrect or missing unit from an answer that would otherwise gain all the marks available for that answer: maximum 1 per question. No deduction is incurred if the unit is missing from the final answer but is shown correctly in the working.

Fractions Allow these only where specified in the mark scheme.

|   | Pa  | ge 4                                               | Mark                                                                                          | k Scheme                                              | Syllabus             | Paper        |
|---|-----|----------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------|--------------|
|   |     |                                                    |                                                                                               | May/June 2014                                         | 0625                 | 31           |
| 1 |     | è                                                  | quid) has a uniform on the enly/expands linearly y two from:                                  | expansion/expands at a                                | constant rate/e      | xpands<br>B1 |
|   |     | la<br>m<br>n                                       | ger bulb/wider/longer bu<br>ore liquid<br>rrower capillary/tube<br>e liquid with greater expa |                                                       |                      | B2           |
|   |     | (iii) th                                           | ermometer must be longe                                                                       | er                                                    |                      | B1           |
|   | (b) | voltag<br>volum<br>colou<br>amou<br>colou<br>expar | nce/conductance of a me<br>e/current of a thermocoup<br>e/pressure/expansion/co<br>of a metal | ontraction of a gas<br>acy OR wavelength of radiation |                      | urnace<br>B2 |
|   |     |                                                    |                                                                                               |                                                       |                      | [Total: 6]   |
|   |     |                                                    |                                                                                               |                                                       |                      | [Total: 6]   |
| 2 | (a) | (dens                                              | y =) mass/volume                                                                              |                                                       |                      | B1           |
|   | (b) | water                                              | used in measuring/gradu                                                                       | ated cylinder                                         |                      | B1           |
|   |     | volum                                              | e of water known or read                                                                      | /recorded/taken                                       |                      | B1           |
|   |     | place                                              | he coins in the water and                                                                     | I read/record/take new leve                           | l of water in cylind | der B1       |
|   |     | subtra                                             | ct readings                                                                                   |                                                       |                      | B1           |
|   |     |                                                    | TERNATIVE METHOD:<br>ater into displacement ca                                                | an to level of spout                                  |                      | (B1)         |
|   |     | place                                              | he coins/several coins in                                                                     | n the water                                           |                      | (B1)         |
|   |     | collec                                             | overflow                                                                                      |                                                       |                      | (B1)         |
|   |     | meas                                               | re volume of overflow wa                                                                      | ater using measuring graduat                          | ed cylinder          | (B1)         |
|   |     | meas                                               | re mass/weigh the coins                                                                       | sused with balance/spring b                           | alance               | B1           |

|   | Pa  | ge 5                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                      |          | rk Sche               |                         |            |         | Syllab              |          | Pap   | er       |
|---|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|----------|-----------------------|-------------------------|------------|---------|---------------------|----------|-------|----------|
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | IC                   | GCSE -   | May/Ju                | ne 2014                 |            |         | 0625                | 5        | 31    |          |
|   | (c) | read measuring cylinder levels at bottom of meniscus repeat volume measurement and find average place eye level with surface in measuring cylinder (to avoid parallax error) place coins one at a time to avoid air bubbles between coins avoid splashing when adding coins to water make sure coins are dry/clean use narrow/small measuring cylinder place containers on horizontal surface check zero of balance/spring balance/scales |                   |                      |          |                       |                         |            | D4      |                     |          |       |          |
|   |     | displace                                                                                                                                                                                                                                                                                                                                                                                                                                  | ment o            | can metr             | iod: ma  | ke sure               | arıppıng                | inisnes i  | petore  | and afte            | r adding | coins | B1       |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                      |          |                       |                         |            |         |                     |          | [Te   | otal: 7] |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                      |          |                       |                         |            |         |                     |          |       |          |
| 3 | (a) | Fd OR w                                                                                                                                                                                                                                                                                                                                                                                                                                   | veight            | × d OR i             | ngh OR   | 30 000                | × 10 × 1                | 40 OR 4.   | .2 × 10 | <sup>7</sup> seen a | nywhere  | !     | C1       |
|   |     | (P = ) E/                                                                                                                                                                                                                                                                                                                                                                                                                                 | t OR              | W/t OR               | mgh/t    | symbols               | or words                | <b>;</b>   |         |                     |          |       | C1       |
|   |     | 4.2 × 10                                                                                                                                                                                                                                                                                                                                                                                                                                  | <sup>7</sup> /60  |                      |          |                       |                         |            |         |                     |          |       | C1       |
|   |     | 7.0 ×10 <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                      | W/70              | 0 kW/0.              | 7 MW     |                       |                         |            |         |                     |          |       | A1       |
|   | (b) | efficienc                                                                                                                                                                                                                                                                                                                                                                                                                                 | y = ou            | tput/inp             | ut OR (/ | P <sub>in</sub> =) 10 | 00 × P <sub>out</sub> / | efficienc  | y       |                     |          |       | C1       |
|   |     | (P <sub>in</sub> =) 10                                                                                                                                                                                                                                                                                                                                                                                                                    | 00 × 7            | × 10 <sup>5</sup> /7 | 0        |                       |                         |            |         |                     |          |       | C1       |
|   |     | 1.0 × 10 <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                     | <sup>6</sup> W OI | R 10000              | 000 W C  | )R 1.0 M              | 1W                      |            |         |                     |          |       | A1       |
|   | (c) | (horizont                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                 |                      |          |                       | _                       | ertical fo | rce on  | water               |          |       |          |
|   |     | OR force                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                      |          |                       | ii watoi                |            |         |                     |          |       | B1       |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                      |          |                       |                         |            |         |                     |          | [Te   | otal: 8] |
| 4 | (a) | 2 lines a                                                                                                                                                                                                                                                                                                                                                                                                                                 | ıt 90° t          | o each d             | other of | same le               | ngth labe               | elled 30 N | lor6c   | m                   |          |       | B1       |
|   |     | both line                                                                                                                                                                                                                                                                                                                                                                                                                                 | s 6.0 :           | ± 0.2 cm             |          |                       |                         |            |         |                     |          |       | B1       |

OR a complete square shown with diagonal and arrows on adjacent sides

B1

В1

B1

arrows on the two lines drawn, either head to tail

resultant in range 40-45 N

(b) (vertically) upwards

| Page 6                 | Mark Scheme                                                          | Syllabus | Paper |
|------------------------|----------------------------------------------------------------------|----------|-------|
| -                      | IGCSE – May/June 2014                                                | 0625     | 31    |
|                        |                                                                      |          |       |
| (c) same as            | value in (a), only if answer to (a) is a force                       |          |       |
| (c) same as<br>OR 40–4 | value in <b>(a)</b> , only if answer to <b>(a)</b> is a force<br>5 N |          |       |

(a) (i)  $(W = mg = 1440 \times 10 =) 14400 \text{ N}$ 5 **B1** (ii)  $(P =) F/A OR 14400/(1.5 \times 1.2)$ C1 8000 Pa OR N/m<sup>2</sup> **A1 (b) (i)**  $(P =) h\rho g \text{ OR } 1.4 \times 1000 \times 10$ C1 14 000 Pa OR N/m<sup>2</sup> Α1 (b) (ii) pressure on base of P smaller/Q greater M1 (with same volume removed) smaller decrease in depth in Q OR height in **Q** is greater Α1

6 (a) (molecules) move in random directions/randomly/with constant random motion/zig-zag motion/in all directions

B1

(molecules) have random speeds OR a range of speeds OR move (very) fast/at (very) high speed

B1

any 1 from:
(molecules) collide with each other (molecules) move in straight lines between collisions (molecules) change direction in collisions

(molecules) collide with walls (of cylinder)

(b) (i) pressure increases

M1

more <u>frequent</u> collisions between molecules and <u>walls</u>
OR molecules collide with <u>walls</u> more often/at greater rate

A1

(ii) pV = constantOR  $p_1V_1 = p_2V_2$  in any form OR  $1.0 \times 10^5 \times 500 = p_2 \times 240$ 

 $2.1 \times 10^5$  Pa to 2 or more sig. figs

[Total: 7]

[Total: 7]

**B1** 

| Page 7 | Mark Scheme           | Syllabus | Paper |
|--------|-----------------------|----------|-------|
|        | IGCSE – May/June 2014 | 0625     | 31    |

| 7 | (a) |            | liquid evaporates) at any temperature/below the boiling point/over a range apperatures/below 100°C/at different temperatures/not at a fixed temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of<br>B1   |
|---|-----|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|   |     | (du        | ring evaporation) vapour forms at/escapes from the surface of the liquid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B1         |
|   |     |            | thout a supply of thermal energy,) evaporation continues/occurs/doesn't stop causes liquid to cool/is slower/reduces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B1         |
|   | (b) | (i)        | (Q =) mL<br>OR $0.075 \times 2.25 \times 10^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C1         |
|   |     |            | $1.7 \times 10^5 \mathrm{J}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A1         |
|   |     | (ii)       | $(E =) VIt OR 240 \times 0.65 \times (20 \times 60)$<br>OR $P = IV $ and $P = E/t OR $ energy/time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C1         |
|   |     |            | $1.9 \times 10^{5} J$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A1         |
|   |     | (iii)      | energy is transferred to the surroundings  OR in heating the surroundings/air/atmosphere/hot-plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B1         |
|   |     |            | OK in heading the surroundings/aii/atmosphere/hot-plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|   |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [Total: 8] |
| 8 | (a) | spe        | eed of sound in gas: 300 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B1         |
|   |     | spe        | eed of sound in solid: 3000 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1         |
|   | /L\ |            | tialaa / waalaa walaa / atawaa aa sillata /wikwata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
|   | (a) |            | ticles/molecules/atoms oscillate/vibrate<br>pressure variation/compressions/rarefactions/displacements <u>move</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B1         |
|   |     | in t       | he direction of travel (of the wave/sound)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B1         |
|   | (-) | <b>(1)</b> | to a constant and the standard and the s | D4         |
|   | (c) | (i)        | two complete wavelengths/cycles with shorter wavelength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B1         |
|   |     |            | wave drawn has greater amplitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1         |
|   |     | (ii)       | higher frequency/pitch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B1         |
|   |     |            | louder/higher volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B1         |
|   |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [Total: 8] |
| 9 | (a) | (i)        | (I =) V/R OR 6/(12 + 4) OR 6/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C1         |
|   |     |            | 0.38 A/0.37 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1         |

|    | Page 8 |       | Mark Scheme                                                                                        | Syllabus           | Paper      |
|----|--------|-------|----------------------------------------------------------------------------------------------------|--------------------|------------|
|    |        |       | IGCSE – May/June 2014                                                                              | 0625               | 31         |
|    |        | . ,   | $1/R = 1/R_1 + 1/R_2$<br>OR $(R =) R_1 R_2/(R_1 + R_2)$<br>OR above with numbers substituted       |                    | C1         |
|    |        |       | $R = 3 (\Omega)$                                                                                   |                    | C1         |
|    |        |       | (I = 6/3 =) 2(.0) A                                                                                |                    | A1         |
|    |        |       | OR ALTERNATIVE METHOD:<br>6/12                                                                     |                    | (C1)       |
|    |        |       | + 6/4                                                                                              |                    | (C1)       |
|    |        |       | 2(.0) A                                                                                            |                    | (A1)       |
|    | (b)    |       | $R \propto l$ (in words or symbols)<br>OR directly proportional OR e.g. $R$ doubles when $l$ doubl | es                 | B1         |
|    |        |       | $R \propto 1/A$ (or with words)<br>OR inversely proportional OR e.g. $R$ doubles when $A$ hal      | ves                | B1         |
|    | (c)    | 4/12  | 2 OR 4:12 OR 1/3 OR 1:3 OR 0.33                                                                    |                    | B1         |
|    |        |       |                                                                                                    |                    | [Total: 8] |
| 10 | (a)    | slip- | rings (and brushes)                                                                                |                    | В1         |
|    | (b)    | (i)   | sinusoidal curve, any value at $t = 0$                                                             |                    | B1         |
|    |        | (ii)  | appropriate $T$ value indicated on graph                                                           |                    | B1         |
|    |        | (iii) | smaller T/time of one cycle OR higher frequency                                                    |                    | B1         |
|    |        |       | higher maximum current/greater amplitude/higher peak                                               | s/higher peak-to-p | peak B1    |
|    | (c)    | diod  | e/rectifier                                                                                        |                    | B1         |
|    |        |       |                                                                                                    |                    | [Total: 6] |
| 11 | (a)    | •     | one/zero/0/neutral AND<br>n (or more) of lead/thick lead/50 cm (or more) of concrete               | )                  | B1         |
|    |        |       | article/electron AND<br>named metal/glass/concrete OR 1m of air                                    |                    | B1         |
|    |        |       | article/helium nucleus/2 protons + 2 neutrons/ ${}_2^4$ He/ ${}_2^4\alpha$ /tive OR + OR +2        | AND                | B1         |

| Page 9            | Mark Scheme                             | Syllabus | Paper |
|-------------------|-----------------------------------------|----------|-------|
|                   | IGCSE – May/June 2014                   | 0625     | 31    |
| <b>(b) (i)</b> 38 |                                         |          |       |
| (ii) 90           |                                         |          |       |
| (iii) 52          |                                         |          |       |
| (iv) 38           |                                         |          | В3    |
| ` '               | s = 3 half-lives                        |          | C1    |
| OR naiv           | ing in steps from 4800 to 600 seen      |          | CI    |
| half-life :       | = 12 hours OR 3 half-lives OR 2/3 of 36 |          | C1    |
| (further          | time to reduce to 150 Bq =) 24 (hours)  |          | A1    |

[Total: 9]