MARK SCHEME for the May/June 2014 series

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

www.onlineexamhelp.com

	Page 2		Mark Scheme Syllabus		Paper		
			IGCSE – May/June 2014	0620	31		
1	(a) <u>A</u> , <u>D</u> , <u>E</u> (1)						
	sar	same number of protons and electrons/electrically neutral (1)					
	(b) C	(1)					
	mo	ore ele	ctrons than protons/ $36e^-$ and $34p^+$ /it has gained el	ectrons (1)	[2]		
	(c) B,	F (1)			[1]		
	(d) the	ey have	e same number of protons (1)				
	diff	ferent	number of neutrons/neutron number (1)		[2]		
					[Total: 7]		
2	(a) (i)	filtrat	tion (1)				
		chloi	rination (1)		[2]		
	(ii)		two from:		[2]		
		•	manufacture of ethanol used in the manufacture of sulfuric acid or in the Co manufacture of hydrogen or ammonia or for the Ha	-			
	(iii)	-	two from:		[2]		
		•	cooking washing or laundry				
			drinking toilets				
			watering plants (domestic) heating				
	(b) boi	iling or	turning to steam (1)				
	the	en con	densing/condensation (1)		[2]		
					[Total: 7]		
3	(a) (i)		icles) spread to fill total available volume/move fro w concentration/moves down a concentration gradi	-	[1]		
	(ii)	mas	s or M _r (1)		[1]		
	(b) (i)		m atoms/molecules are lighter than molecules in a	ir or N_2 and O_2			
			elium is less dense than air or N ₂ and O ₂ . elium diffuses (through the porous barrier) faster (1)	r than air or N_2 and	[1]		

Page 3		Mark SchemeSyllabusIGCSE – May/June 20140620					;	Paper				
				<u>GCSE –</u>	May/Jur	ne 2014			0620		31	
((ii)	faster rate of diffusion/molecules move faster (at high temperatures). (1)						. (1)		[1]		
(c)	(i)	CH ₄ + 2	$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ (1)								[1]	
((ii)	or would	et a mixtu l get a mix e of metha	xture of g	gases							[1]
(i	iii)	fractiona	<u>I</u> distillatio	an (1)	-		. ,					[1]
(i	,	mactiona	<u>n</u> uistinatit								<i>(</i>	
											[Tota	l: 7]
4 (a)	(i)											
- (-)		Group number		I	11	111	IV	V	VI	VII		
		symbol		Na	Mg	Al	Si	Р	S	Cl		
		number valency electrons		1	2	3	4	5	6	7		
		valency		1	2	3	4	3	2	1		
	L			I			I		(*	1) for ea	ach line	[2]
((ii)	number	of valency	y electror	ns = the g	group n	umber (1)				[1]
(i	,	for Na to the valer	A <i>l</i> ncy is the	same as	s the num	ber of v	/alency (outer) ele	ectrons (1)		
		(because	e) this is t	he numb	er of ele	ctrons l	ost (for f	ull energ	y level)(1)		
			C <i>l</i> ncy is 8 – cy + valer				er) electro	ons]				
			e) this is evel) (1)	number	of elect	rons n	eeded(or to be	gained)	(for fu	II	
(b)	(i)		change is amphoter			ss clea	rly stated	1:				[2]
((ii)	ionic (metal) chlorides on the left (1) covalent (non-metal) chlorides on the right (1)						[2]				
											[Total:	11]

	Page 4			Syllabus	Paper
			IGCSE – May/June 2014	0620	31
5	(a)	M1:	(zinc sulfide) heated/roasted/burnt in air (1)		
		M2:	zinc oxide formed (1)		
		M3:	zinc oxide reduced (1)		
		M4:	(by adding) coke or carbon (1)		
		M5:	Balanced equation (any one of) (1)		[5]
		2Zn ZnC	$\begin{array}{rcl} \mathrm{iS} + 3\mathrm{O}_2 &\rightarrow 2\mathrm{ZnO} + 2\mathrm{SO}_2 \\ \mathrm{iO} + \mathrm{C} &\rightarrow 2\mathrm{Zn} + \mathrm{CO}_2 \\ \mathrm{O} + \mathrm{C} &\rightarrow \mathrm{Zn} + \mathrm{CO} \\ \mathrm{O} + \mathrm{CO} &\rightarrow \mathrm{Zn} + \mathrm{CO}_2 \end{array}$		
	(b)	Any	r two from:		[2]
		• • •	(making) brass or alloys (1) galvanising (1) sacrificial protection (1) batteries (1)		
					[Total: 7]
6	(a)	(i)	rate at t_2 less than at t_1 or the rate decreases (1)		
			rate at t_3 zero/reaction stopped (1)		[2]
		(ii)	rate at t_2 less than at t_1 because concentration of at t_2 or concentration of hydrogen peroxide is de		S
			(rate at t_3 zero/reaction stopped because) hydrog	en peroxide is used up (1)	[2]
	(b)	(i)	steeper and must come from the origin (1) final volumes the same (1)		[2]
		(ii)	Any two from: steeper curve because of a faster rate faster rate because of increased surface area same amount/volume/mass/no of mol of hydroge ecf for M1 for a shallower curve because of slower		[2]

www.onlineexamhelp.com

© Cambridge International Examinations 2014

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2014	0620	31

(c) filter (and rinse/wash) (1)

dry manganese (IV) oxide (1)

weigh/measure mass manganese(IV) oxide after reaction (1)

the mass should be 0.1 g or unchanged. (1)

(d) number of moles of O_2 formed = 0.096/24 = 0.004 (1) number of moles of H_2O_2 in 40 cm^3 of solution = $0.004 \times 2 = 0.008$ (1)

concentration of the hydrogen peroxide in $mol/dm^3 = 0.008/0.04 = 0.2$ (1) [3]

[Total:15]

[3]

[1]

[4]

7	(a)	(i)
---	-----	-----

aqueous solution	lead Pb	magnesium Mg	zinc Zn	silver Ag
lead (II) nitrate				×
magnesium nitrate	X×		×	×
zinc nitrate	×	1		×
silver(I) nitrate	✓	1	1	

each horizontal line correct (1)

(ii) Zn (1)

An arrow from Zn to Zn^{2+} (1) [2]

(iii)
$$Zn + 2Ag^+ \rightarrow Zn^{2+} + 2Ag$$
 (1) [1]

- (b) (i) correct direction from zinc to lead (1)
 - (ii) metals react by losing electrons (1)

the more reactive metal/zinc will lose electrons more readily (making the electrode negatively charged). (1) [2]

Page 6	6	Mark Scheme	Syllabus	Paper	
		IGCSE – May/June 2014	0620	31	
(iii)	man	ganese and zinc are more reactive than lead (and /	or copper) (1)		
	lead	is more reactive than copper (1)		[2]	
(iv)		oolarity of a Mn/Zn (cell) he voltages of Zn/Pb and Mn/Pb (cells)(1)		[4]	
	Or u			[1]	
				[Total: 12]	
8 (a) (i)	CH₃	$-CH=CH_{3}(1)$		[1]	
(ii)	one	correct amide linkage between two rectangles (1)			
	corre	ect sequencing of a second amide link and monome	ers (1)		
		correct amide links and rest of structure correct omers if seen) and correct continuation bonds (1)	: (including addition	al [3]	
	_		3 marks		
(iii)	prote	ein or polypeptide or named protein (1)		[1]	
(iv)	addi	tion: only the polymer or one product is formed (1))		
	cond	lensation: the polymer and a small molecule/water	/HC <i>l</i> is formed (1)	[2]	
(b) (i)	does	s not break down or rot or decompose (1)			
	by m	nicrobes or fungi or bacteria or by living organisms	(1)	[2]	
(ii)	•	three from: al pollution (1)		[3]	
	(sho	rtage of) landfill sites (1)			
	dang	ger to wildlife/animals (including at sea) (1)			
	toxic	gases when burnt or greenhouse gases produced	when burned (1)		
(c) Any res	-	from: to corrosion/unreactive to water/more durable (1)		[2]	
ligh	nter/le	ess dense (1)			
eas	easier to manufacture/can be moulded (1)				
goo	od ins	ulator/keeps the water cold (1)		[Total: 14]	