UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

0580 MATHEMATICS

0580/21

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

www.OnlineExamHelp.com

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2011	0580	21

Abbreviations

- cao correct answer only
- cso correct solution only
- dep dependent
- ft follow through after error
- isw ignore subsequent working
- oe or equivalent
- SC Special Case
- www without wrong working

Qu.	Answers	Mark	Part Mark
1	847	1	
2	correct regions shaded	1, 1	
2	40	•	
3	48	2	BI for 3 and 16 seen
4	(a) 10	1	
1	(a) 10	-	
	(b) 5.5 oe	1	
5	(a) 86400	1	
	(b) 8.64×10^4	1ft	
6	108	2	M1 for 3 ³ or 27 or $\left(\frac{1}{3}\right)^3$ or $\frac{1}{27}$ seen
7	13	3	B1 for 12, 5 seen M1 for (their $12)^2$ + (their 5) ²
			or M2 $\sqrt{[(-8-4)^2+(1-6)^2]}$ oe
			or M1 if √ missing
8	6.70	3	M1 for $(r^3 =)$ 1260 × $\frac{3}{4\pi}$ oe seen
			M1 for $\sqrt[3]{}$ of their r^3 seen or implied
9	22.5 oe	3	B2 $180 = 5x + 2x + x$ oe or better
			B1 for $2x$ or $6x$ marked in the correct place on the
10	12		diagram.
10	x = 13	3	MI for consistent multiplication and
	y = -9		addition/subtraction A1 for $x = 13$ or A1 for $y = -9$
11	(a) 85.8	2	M1 for 23.25 and 19.65 seen
		_	
	(b) 456.8625 cao	1	
12	(a) (0)8(.)01 (am)	1	Not 8.01pm
	(b) 78.4 or 78.38 to 78.39	3	M2 for $827 \div 10.55$
			or W11 for figs $82/$ ÷ their time
13	(a) 0.54	2	M1 for $\frac{2.7 \times 20000}{100000}$ oe
			or SC1 for figs 54 in answer
	(b) 1.61	2	SC1 for figs 161 or M1 200^2 or 20 000^2 seen

Page 3 Mark Scheme: Te		achers' version		Syllabus	Paper		
		IGCSE – May	/June 20	011	0580	21	
14	-2.64, 1.1	4 cao with working	4	B1 for $\sqrt{3^2 - 4(2)}$ B1 for $p = -3$ and	(2)(-6) or better seen anywhere nd $r = 2 \times 2$ or better as long as in		
				the form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$			
				After B0B0, SC1 for -2.6 or -2.637(45) and 1.1 or 1.137(45)			
15	(a) 4	n	1				
	(b) (i) $\frac{1}{3}$	$\frac{2}{6}$ oe 0.333	1				
	(ii) $\frac{1}{3}$	$\frac{1}{6}$, 0.306 or 0.3055 to	1				
	(c) $\frac{8}{15}$ or ().533(3)	1				
16	(a) Answer	given	2	$\mathbf{M1} \ (A=)k^2 - \pi \bigg($	$\left(\frac{k}{2}\right)^2$		
				E1 $A = k^2 - \frac{\pi k^2}{4}$	eted to $4A = 4k^2 - \pi$	k^2	
	(b) $k = (\pm)_{1}$	$\sqrt{\frac{4A}{(4-\pi)}}$ or $2\sqrt{\frac{A}{(4-\pi)}}$	3	M1 factorising (M1 division (by	(must contain a π) coefficient of k^2)		
17	(a) 66°		2	M1 for 90° clean	rly identified as A		
	(b) 33°		1				
	(c) 123°		2	B1 for <i>OBA</i> or <i>C</i>	$DAB = 57^{\circ}$		
18	(a) (i) -r (ii) ¹ / ₂	$+ \mathbf{q} \text{ or } \mathbf{q} - \mathbf{r}$ $(3\mathbf{q} - \mathbf{r}) \text{ oe}$	1 1	Must be simplifi	ied		
	(b) correct	working	3	M1 for $MX = \frac{1}{2}$ M1 using a different set of the correct s	$\mathbf{r} + \frac{3}{4}$ their ($-\mathbf{r} + \mathbf{q}$ event route for XS of implification and c) r ½ <i>MS</i> onclusion	
19	(a) 480		1		A		
	(b) 9900		3	M1 for attempt a M1 for 0.5 × 15 or 0.5 × 15 × (8	at area under graph × (their (a) + 14 × + 14) oe	60) oe	
	(c) 0.125 or	$r \frac{1}{8}$	2	M1 for numerication $M1$ for $u = u + at$	al vertical/horizontation terms of the second seco	al or numerical	
20	(a) (i) 9 (ii) 8x	³ cao	1 1				
	(b) 4 www		3	M1 for $(2x - 3)^3$	= 125 M1 2x - 3 =	= 5	
	(c) $\frac{x+3}{2}$		2	M1 for $x \pm 3 = 2$	$2y \text{ or } x = \frac{y \pm 3}{2}$		